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Driven Nonequilibrium Lattice Systems 
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We present the first study of a driven nonequilibrium lattice system in the two- 
phase region, with shifted periodic boundary conditions, forcing steps into the 
interface. When the shift corresponds to small angles with respect to the driving 
field, we find nonanalytic behavior in the (internal) energy of the system, sup- 
porting numerical evidence that interface roughness is suppressed by the field. 
For larger shifts, the competition between the driving field and the boundary 
induces the breakup of a single strip with tilted interfaces into many narrower 
strips with aligned interfaces. The size and temperature dependences of the 
critical angles of such breakup transitions are studied. 

KEY WORDS:  Nonequilibrium steady state system; interfaces; phase 
transitions. 

1. I N T R O D U C T I O N  

Recently, there has been considerable interest in studying phase transitions 
in a driven lattice gas system, originally introduced as a model for super- 
ionic conductors. (it Much effort (2 5~ has been devoted to the characteriza- 
tion of new, nonequilibrium critical behavior in the bulk. For all tem- 
peratures below the transition, this system separates into an ion-rich phase 
and an ion-poor one. This paper concerns properties of the interface 
between these phases. For  interfaces in equilibrium systems, there is a host 

Courant Institute of Mathematical Sciences, New York University, New York, 
New York 10012. 

2 Present address: School of Physics and Astronomy, University of Minnesota, Minneapolis, 
Minnesota 55455, and Minnesota Supercomputer Institute, Minneapolis, Minnesota 55415. 

3 Center for Transport Theory and Mathematical Physics and Physics Department, Virginia 
Polytechnic Institute and State University, Blacksburg, Virginia 24061. 

43 

0022-4715/89/0700-0043506.00/0 ~@ 1989 Plenum Publishing Corporation 



44 Vall~s et  al. 

of well-known phenomena, e.g., roughening, ~6'7)'4 wetting, (9~'5 etc. For 
interfaces in nonequilibrium steady states, there are also many studies in a 
multitude of fields, e.g., crystal growth, ~6~ phase separation (see, e.g., 
refs. 11), and the classic Stefan problem (see, e.g., ref. 12), to name but a 
few. However, due to the extreme diversity of nonequilibrium systems, 
none of these investigations apply to our case, for which only a few studies 
exist.(13.14) 

One signal of a rough interface is a divergent (7'8) statistical width in the 
thermodynamic limit. For  a three-dimensional Ising lattice gas in equi- 
librium, certain interfaces are known (is)'6 to have a phase transition from 
smooth to rough as the temperature T is raised through the roughening 
temperature TR (>0) .  In contrast, for any two-dimensional model with 
periodic lattices and short-range interactions, all interfaces are rough, i.e., 
Te- -0 .  However, when such a system is driven to a stationary state far 
from equilibrium, a finite interracial width is found in recent Monte Carlo 
(MC) studies. (14). Here, the driving force simulates the effect of a uniform 
external electric field E along one of the principal directions of the lattice. 
Though this suppression of the interface roughness is similar to what 
happens in equilibrium under the action of a gravitational field, (t6~ there 
are several differences. For  example, unlike the familiar gravitational case, 
an interface in the driven system is parallel to the E field. A more subtle 
difference lies in the behavior of the structure factors. 

In a different approach, the roughening transition can also be charac- 
terized (7"8) by the vanishing of the excess step free energy fs(T). The notion 
behind this definition is that steps will proliferate if there is no cost (f ,  = 0) 
to their formation, leading to a divergent width. Related to fs is the 
anisotropic interracial tension r(n, T), which is the free energy (per unit 
area) associated with an interface with normal n. For  systems in two 
dimensions, n can be parametrized by a single angle 0 corresponding to 
interfaces tilted with respect to a principal axis. These tilted interfaces are 
obtained by imposing shifted periodic boundary conditions (SPBC), also 
known as screw boundary conditions, in that principal direction. When 
normalized by the cross-sectional area, fs(T) is simply the limiting inter- 
facial tension due to an infinitesimally small 0, i.e., fs=&/~?Olo. Thus, 
Monte Carlo studies of lattices with SPBC are used (~5) to explore fs in 
equilibrium systems. Our study of driven systems with SPBC is motivated 
by such an approach. Though we can only measure u(O), the internal 
energy, and cannot compute the free energy, we found that Ou/~?Olo does 

4 See ref. 8 for a recent review. 
5 See refs. 10 for recent reviews. 
6 See refs. 7 and 8 for theoretical models. 
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not vanish when the external field is turned on. Based on observations of 
bulk densities and finite size analysis, we argue that this singularity is 
present in the bulk  energy. We intend to pursue a theoretically sound 
connection between this kind of singularity and suppression of interracial 
roughness. 

In the case of nonequilibrium systems driven by an external field and 
with periodic boundary conditions (PBC), previous numerical simulations 
have reported that below the new critical temperature the system attains a 
stationary state which is highly anisotropic, with the interfaces oriented 
along the field. In contrast, the existence of shifted periodic boundary 
conditions represents a new external agent that competes with the field to 
orient the system. Interesting new phenomena arise, as the system adapts 
new configurations to become commensurate with the shifted boundary 
condition. These new transitions are reflected in the plots of the energy and 
the current versus the shift. 

2. S I M U L A T I O N  M E T H O D  

We consider an L x L square lattice-gas version of the Ising model 
where the sites (i, j = 1, 2,..., L) can be either empty or occupied by an ion 
(nz.j=0 or 1; also refered to as particle or hole). Restricting ourselves to 
the case of mutually attractive ions, we study a half-filled lattice for 
convenience. In the presence of an external electric field E, chosen to point 
in the - x  direction, a steady current of ions is established when the 
boundary conditions are periodic in X. (1'4"5). The system evolves under a 
particle-conserving hopping dynamics when the ions hop to nearest- 
neighbor (NN) empty sites according to the transition probabilities per 
unit time p = min(1, exp [ - ( 3 H  + eE) /kB T] ). Here 3H is the change in the 
configurational energy, 

H({n~j})= - 4 J  ~ n~jn~,j,, J > 0  (1) 
NN 

produced by the jump, while e = 1, 0, - 1, depending on whether the ions 
jumps against, transverse to, or with the driving E field. In this way, we 
simulate a system interacting stochastically with a heat bath at a tem- 
perature T. We will measure T in units of the Onsager critical temperature 
T c = 2 .2692J /k  B. As before, (14J the simulation for our interface is practical 
only for a limited range of temperatures, since T must be low enough for 
the interface to be well defined, but not too low for the system to evolve 
significantly. 

As mentioned above, in the case of PBC in both the x and y direc- 
tions, it is known that below T c ( E )  the system presents an anisotropic one- 
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strip stationary state, with the stirp oriented along the field. Since we are 
mainly interested in the study of tilted interfaces, we shall impose SPBC in 
the x direction, while keeping the PBC in the y direction. For a shift of h 
lattice spacings these conditions are explicitly 

ni, j+L=ni ,  j, PBC (2a) 

ni+c,j-=ni, j h, SPBC (2b) 

so that when a particle leaves one of the lateral edges it comes back to the 
other edge at a shifted site. Thus, the most (energetically) favorable 
configuration is a single tilted strip. In fact, the SPBC can be regarded as 
equivalent to twisting the lattice torus, along with the field, through the 
angle desired. 

In equilibrium (E = 0), the SPBC with a shift of h lattice constants create 
a tilted interface with an angle of O=tan-l(h/L) with respect to the 
horizontal axis. In our study we choose to start the simulations with a 
single compact strip tilted at that angle which would correspond to the 
state at zero T and E. Thus, the process is equivalent to performing an 
inverted quench to the desired temperature while switching the field on. 
With E > 0, we can define 0 more precisely by 

O-~sin l(n. e) 

where n is the normal pointing into the particle-poor phase and e is a unit 
vector in the direction of E. 

The main focus of our simulation is studying the behavior of the 
(internal) energy, which we associate with the average number of 
particle-hole bonds per lattice site(4~: 

u(O, T) ( H )  2 = ~ - ~ -  + 2; u(0, 0 ) = ~ ;  u(0, c~)= 1 (3) 

Another quantity often used (5) is the NN correlation function for the Ising 
ferromagnet, which is just 2 ( 1 - u ) .  For  systems in equilibrium, the free 
energy can be obtained from u through a thermodynamic integration. For  
the three-dimensional Ising model, the surface free energy ~ is obtained via 
this route. (15~'7 

It is also interesting to study the current j (0, T), which is defined as 
the number of actual jumps performed along the field during the stationary 
evolution divided by its duration (in MC steps). In the case of E =  o% the 
current is related to u~(O, T), the "directional" energy corresponding to the 

7 See ref. 17 for review. 
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particle-hole bonds parallel to the field, since j(O, T)= ux(O, T)/4. We will 
normalize the values of the current to 1,/8, which is the saturation current 
for noninteracting ions with PBC. Notice that this quantity behaves rather 
smoothly, due to the fact that it results from averaging over time and all 
particle-hole bonds parallel to E. 

3. R E S U L T S  FOR S M A L L  S H I F T S  

Since the concept of free energy will not be very useful in driven 
systems, we turn to another property characterizing the interface: excess 
internal energy, i.e., the energy difference between systems with and without 
an interface. In general, it is 

Zu(O, T)= 1/2[_u(0, T) -  u=(O, :r)] (4) 

where us(O, T) is the energy per site in a system with SPBC that has the 
same density of particles as the bulk well inside a strip at a temperature T. 
The factor 1/2 comes from having two interfaces in a system with a strip 
(of the dense phase). Apart from being a consequence of periodic boundary 
conditions in the transverse directions, such an average should provide 
better statistics. 

For systems in equilibrium, u8 does not depend on 0 and the two 
interfaces are equivalent. Thus, LAu will go to a constant in the ther- 
modynamic limit, representing the energy per unit area associated with a 
single interface. Since u B is a constant, 

OAu(O, T)/c~OIo o = 1/2c~u(O, T)/?~OIo=o (5) 

The surface tension r (a free energy) can be obtained from Au (an internal 
energy) by an appropriate integration (17/in T, so that the 0 dependence is 
not affected. Consequently, 

Ou(O, T)/O0 #0~=~0r(0, T)/O0 #0  (6) 

i.e., the slope of the energy-angle curve at 0 = 0 will determine whether the 
interface is rough or smooth. 

Before proceeding to nonequilibrium systems, we remark that such a 
connection between singularities in u and smooth surfaces exists in another 
situation, namely, interface "smoothing" by an external gravitational field. 
On the one hand, the width is well known not to diverge with the system 
size. Instead, it approaches the capillary height. On the other hand, it is 
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straightforward to estimate that, in a simulation with pinned 8 boundary 
conditions, the energy will have a term like 101. 

For  a driven system, however, our simulations show that the bulk 
excitations do depend on the shifts, increasing with h until the appearance 
of multistrip configurations. Thus, uB is written as a function of 0. One 
might expect a bulk quantity like u8 to be analytic in 0, so that a term like 
L01 could be assigned to Au and both (5) and (6) would remain valid. 

Convinced that the internal energy u(O) contains physically significant, 
quantitative information about the interface, we have performed simulation 
at T = 0 . 8  in a system with L =  100 and E =  15 (in essence, oc). A large size 
is required so that one can get very small discrete values of the angles. After 
an initial run over 105 MCS, when a stationary state is reached, we average 
over three runs in a row, each consisting of 500 measurements taken 
200MCS apart. The energies for h = 0 ,  1, and 2 are 0.1077, 0.1158, and 
0.1237, respectively. A plot of just these three points will show that u(h) is 
linear in h, within the accuracy of the data (+_0.0005). Naively, it is easy 
to jump to the conclusion that interfacial energies must contain a term 
proportional  to 101, supporting the connection between singularities in such 
energies and the finiteness of the interfacial width. 

However, if we make more careful comparisons between typical con- 
figurations associated with PBC (Fig. la)  and SPBC with small h (Fig. lb), 
we find several surprising features in the latter. 

1. The two interfaces are not equivalent. The "leading" edge (the 
upper interface in Fig. lb) appears rough, while the "trailing" edge 
(the lower one) appears smooth. 

2. The bulk energy density u8 and particle density certainly depend 
on the shift h. 

3. The particle densities in the immediate vicinities of the two inter- 
faces are different, inducing novel density gradients between the 
interfaces. 

We emphasize that these features are completely unexpected, based on 
what is known about  E = 0 or PBC systems. In other words, both E > 0 and 
SPBC must be imposed before these new phenomena could occur. 

Faced with these unexpected features, we turn to systems with other L 
and h in an attempt to separate out the effects on the bulk and the 
interfaces. Data  from simulations with L = 20, 36, 48, and 100 at the same 

8 If one insists on imposing SPBC to induce a "tilted" interface, a spatial discontinuity must 
be introduced into the (gravity part of the) Hamiltonian. It is far from straightforward to 
relate this system to one with a tilted interface in uniform gravity. 
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Fig. 1. Typical single-strip configuration with (a) PBC and (b) SPBC shifted by 5. Here 
L = 100, T =  0.8. The electric field points from right to left. 
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T =  0.8 for small shifts h are used. First we seek uB(O) and u~(O) from the 
fit 

u(1/L, O) ~- u~(O) + ux(O) sec(O)/L (7) 

The idea behind this fit is simple. The total contribution to the energy 
density should approach a bulk term u~(O) for large L. Since there are no 
boundaries in the system, we identify the L J 1 contributions to the total 
energy as interfacial. In the density, these go into a 1/L term, the coefficient 
of which, u~(O), should be the energy (per unit area) associated with both 
of the edges. Once these coefficients are picked out, the small 0 dependence 
can be extracted. 

In practice, due to the integral nature of h, the smallest 0 can be 
is ~ 1/L. Thus, a linear h term in ue is the same order as the lowest term 
in u~. To this order, (l/L), we find a surprising result, i.e., uB is not analytic 
in O: 

us(0) ~-0.08 +0.75 101 + ... (8a) 

u,(0) - 2.68 (8b) 

Though the numerical values appear to be "scattered," they are, in 
fact, consistent with a visual assessment of the typical configurations. The 
first term in (Sa) refers to the average number of particle-hole bonds (per 
site) in the bulk. A glance at Fig. la shows that the density of particles deep 
in the hole-rich phase is rather small, suggesting a small number like 0.08. 
In contrast, 2.68 measures the average number of such bonds along the 
interfaces. Since there are two interfaces, this number represents 1.34 
broken bonds par lattice spacing. If there were no overhangs and bubbles 
( T = 0 ) ,  this number would be exactly 1. Thus, 0.34 seems consistent with 
an "eyeball" estimate of our interface with excitations. 

The most surprising part of (8a) is surely the ]01 term. For  equilibrium 
systems, bulk properties certainly do not depend on the existence of a 
single step on the interface. Though we cannot compute this term, we can 
offer an argument in favor of such an unexpected behavior. Consider a 
system with E >  8J (sufficient but probably unnecessary) in the T =  0 limit. 
With PBC, there would be two flat interfaces, so that u1= 2 and uB =0.  
Next, consider a pair of tilted interfaces, with a single step in each. The 
leading edge is now unstable, since the particle at the step will be driven 
along the terrace, though unable to break free due to T ~  0. Others will 
follow, which is the entire story tf there were no SPBC. With SPBC, 
however, the first particle will eventually come around at a higher level and 
find itself at the corner of a step of height 2. Now, it can break off from the 
bulk and wander into the "vacuum." Due to the SPBC, it has an average 
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drift toward the opposite edge. There, it can be absorbed, first by the 
terrace and finally by the step on this (trailing) edge. Thus, a step on the 
leading edge acts as a source for particles in the hole phase, giving a finite 
uB, even at T--0.  A step on the trailing edge acts as a sink to set up a 
steady state. Note that, due to charge conjugation, holes will leave the 
leading edge and drift toward the trailing edge in the opposite direction. 
Thus, in a steady state, both interfaces are stationary (on the average). 

Finally, we remark on the important role of PBC in the other direc- 
tion. Consider the evolution of the same system with a much larger extent 
in y. If we inspect the sample at times which are long (short) compared to 
a traversal in x (y), then we would find a (quasi-) steady state near the 
interface. Since there will be a constant flux of particles and holes away 
from a leading edge, we see that the bulk density (near the interface) in the 
particle-rich phase must be less than 1, which is the case with no shift. In 
contrast, we could argue that near a trailing edge, the bulk density must be 
higher as a result of the absorbing step. (Note that the argument for this 
edge must be carried out for T r  0, so that it is less transparent.) With PBC 
in y and for observation times much larger than periods of traversal in 
both directions, these differences must match somehow. We believe that 
this mechanism is responsible for the (average) gradient in the bulk. 

The conclusion that bulk densities depend (asymmetrically) on the tilt 
of an interface away from the field direction echoes a previous finding/~8~ 
Work is in progress (~9) toward developing a complete and clear picture of 
this phenomenon. For example, we have preliminary evidence, from a 
continuum model, that density gradients in the bulk are confined to a 
boundary layer near the trailing edge. This scenerio is supported by 
arguments due to van Beijeren. ~2~ Further, we hope to study finite-size 
effects so that an expansion like (7) can be justified and useful information 
can be extracted from the higher order terms in (8). 

4. R E S U L T S  FOR LARGE S H I F T S  

We have also performed a simulation with L = 20, 36, 48, and 100 at 
T =  0.8 for values of shifts h ranging up to 10, 18, 16, and 20 respectively, 
measuring the energy u(h) and the current j(h). The effect of the competi- 
tion between the E field and the SPBC is even more dramatic. In the 
absence of E, the stable configuration always 9 consists of a single strip (of, 
say, the particle-rich phase), with a pair of interfaces tilted at the angle 
tan-1(h /L) .  In marked contrast, when E =  oe, this configuration is stable 

9 Since a multistrip configuration consists of a longer interface than a single strip one, the 
total energy is higher, though the surface tension of the latter (tilted) interface is higher. 



fi2 Vall@s et  al, 

only for small shifts. As the shift increases, the single strip evolves into mul- 
tistrip configurations; an example is shown in Fig. 2. Whenever h equals an 
exact divisor of L, the number of strips, denoted by n, appears to be an 
integer near L/h. Clearly, we could think of the n-strip configuration as a 
single unbroken strip wrapped n times around a torus, so that n plays the 
role of a winding number. The case of integer L/h might be interpreted as 
commensurability with SPBC. For  this reason, we have chosen L values 
with many divisors. 

To describe this "splitting" transition, we roughly identify a critical 
angle 0 c above which a single strip is unstable and evolves into many strips. 
Now, 0c depends on L, decreasing in larger systems. It appears to converge 
to approximately 6 ~ as L ~ o% though we cannot conceive of a convincing 
theoretical basis for such a result. If 0c indeed converges to this constant, 
the implications are startling, namely, stable configurations do not consist 
of more and more strips, while the first multistrip case has less than ten 
strips, regardless of L. If true, such a result suggests that there is some form 
of balance between interfacial (internal) energy, which favors smaller num- 
bers of strips, and interracial alignment with E, which favors more and 
more strips as L -~ o~ with h held fixed. Since interface energy is involved, 
we expect T to play a nontrivial role in a convincing theory of 0c. Before 
developing such a theory, however, we face a daunting task, namely, 
mapping out O~(E, T). 
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Fig. 2. A typical multistrip configuration with SPBC shifted by 20. Here L = 100, T =  0.8. 
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For angles slightly larger than 0 C, multistrip configurations consist of 
three, four, five, and six strips for L = 20, 36, 48, and 100, respectively. As 
0 is increased further, L/h decreases and the system adopts a more stable 
configuration with a smaller number of strips. We observe a sequence of 
"merging" transitions, from n-strip configurations to (n-1)-s t r ip  ones. If 
L/h is an integer, then the stationary state has L/h strips parallel to E. If 
L/h is slightly smaller than an integer, then the strips tilt against the 
direction of shift. On the other hand, they tilt in the direction of shift for 
L/h slightly larger than integral, as a single strip does for small h. In either 
case, the tilt causes an increase in u. In view of the findings of Section 3, 
we can also expect u to be nonanalytic at commensurate shifts. 

These results are summarized in Fig. 3, where u is plotted against 0 for 
various L. The data show that all curves resemble a series of ridges and 
valleys. Each valley is associated with a distinct multistrip configuration. 
The position of the first ridge is identified as 0c and locates the "splitting" 
transition. Subsequent ridges locate "merging" transitions, since n strips 
evolve into n -  1 strips. Similar behavior can be observed in a plot of the 
current versus the shift, shown in Fig. 4. 
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Fig. 5. Energies per site vs. shift for T = ( F q ) 0 . 8 ,  ( � 9  and ( x ) l . 2  in a system with 
L = 20. 
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To probe the temperature dependence, we have performed simulations 
for L = 20 with three temperatures: T =  0.8, 1.0, and 1.2. Figure 5 displays 
the energy versus the shift. Observe that the critical angle is less and less 
well defined at higher T, when the interface becomes more diffuse. The 
flattening of the curves suggests that the change of stabilities among 
different configurations is less pronounced. 

5. S U M M A R Y  A N D  O U T L O O K  

This study goes beyond previous studies on the driven lattice gas by 
demonstrating the much more significant role played by boundary condi- 
tions in determining the details of steady states. In particular, we believe 
that all thermodynamic properties, both steady-state and dynamic, will 
depend on a combination of  E and boundary' conditions, rather than on E 
alone. We found that SPBC introduces a host of new phenomena, as well 
as directions for future research: 

1. The dependence of interfacial structure on orientation is asym- 
metric about the axes of lattice symmetry. The origin can be traced to E, 
which supplies the symmetry-breaking factor n . e  (=s in  0). An interface 
with a small, positive 0,. i.e., a leading edge, is more diffuse. On the other 
hand, interfaces with small, negative 0, i.e., trailing edges, display sharper 
profiles. Once discovered, it is easy to argue that this behavior should have 
been expected, since E drives particles away from a leading edge and into 
a trailing one. We believe that this phenomenon can be understood as an 
analog of those associated with crystal growth and evaporation, ~6) in which 
interfaces are facetted and rough, respectively. However, interfaces in our 
system do not advance or recede, as noted previously. Unlike the bulk of 
a grown crystal, the bulk here is not "static," since there is a steady current 
of particles leaving the trailing (growing) edge by diffusion into the 
particle-rich bulk phase. 

2. The steps on a leading edge acts as sources of particles (and holes) 
flowing into the bulk. Similarly, they act as sinks at the trailing edge. 
In this sense, the analogy with crystal growth and evaporation is 
strengthened. Perhaps it can be exploited in the formulation of a quan- 
titative theory. Certainly, these sources and sinks lead to bulk densities that 
differ from those near an aligned (0 = 0) interface. In turn, these lead to 
bulk energy densities that depend on 0. 

3. In our simulations, steady states are set up with both edges pre- 
sent. Thus, the average energy density u will not display any asymmetry in 
0. Further, we decompose this total into a bulk part u B and an interfacial 
part ul. Surprisingly, we found that a term linear in 0 appears in the bulk 
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ue, forcing us to conclude that it must be a nonanalytic contribution 10t. 
For u~, our data do not allow us to draw a confident conclusion on the 0 
dependence, though we believe that nonanalytic behavior is likely. Beyond 
these averages, we would like to distinguish contributions coming from the 
inequivalent edges. However, it is not clear how this can be achieved 
precisely. 

4. For large 0, i.e., if large shifts in the SPBC were imposed, the 
single-strip configuration becomes unstable, evolving into multistrip ones. 
There appears to be a positive critical angle 0c where this splitting 
transition occurs. More extensive runs with larger systems are necessary 
before we could confirm or disprove the conjecture that 0c does not vanish 
in the thermodynamic limit. As 0 is increased beyond 0c, we observe a 
sequence of merging transitions, characterized by n strips evolving into 
n -  1 strips. If we define Fourier components of particle density as order 
parameters, these transitions would be classified as first order. Again, much 
more studies are needed to determine the L dependence of these transitions 
if they survive the thermodynamic limit and, finally, a phase diagram in the 
E T  plane. 

Though our data were collected on a two-dimensional system, there is 
every reason to believe that such phenomena will persist in higher dimen- 
sions. 

Despite the lack of an appropriately defined "free energy," the internal 
energy u appears to be very useful for quantitative descriptions of interface 
behavior in this nonequilibrium system. Nonanalyticity in u(O), together 
with the result ~14) of field suppression of interfacial width, suggests that the 
connection between singularities in u and interface smoothness may be 
valid in a context broader than systems in equilibrium. Further, u(O) 
appears to have many branches, each related to a different multistrip 
phase, while transition angles can be accurately identified solely from the 
high points in u(O). If they can be established, such connections are clearly 
of great significance. 

At a more refined level, the issue of inequivalent interfaces is pressing. 
A measure should be devised to distinguish, clearly and quantitatively, the 
leading edge from the trailing one. We emphasize that E is the sole agent 
responsible for the apparent smoothness of a trailing edge, since a tilted 
interface is always rough in both two- and three-dimensional equilibrium 
systems. We plan to explore means to induce only one interface in the 
system. Since E differentiates particles and holes, we cannot blindly follow 
the standard trick used in equilibrium systems, namely antiperiodic 
boundary conditions.(~v) 

In this work, we used only one value of E (15 = o% essentially) with 
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a very limited range of T and L. The next step would be a large-scale, 
systematic study, exploring finite-size effects as well as temperature and 
field dependences. Apart from availability of computer time, there are 
several difficulties to overcome. One is the long relaxation times for small 
E. Due to conservation of local particle density, these should follow the 
typical diffusive behavior and increase at least as L 2 for the equilibrium 
( E = 0 )  case. Relaxations of the interface are even slower, (2~) i.e., L 3. 
Estimated from time correlation measurements in the PBC case, (~4/ these 
times were found to be still extraordinarily long for systems driven by a 
small E. Another difficulty is the lack of a sound theoretical foundation for 
finite-size analysis for a nonequilibrium system. 

At present, our understanding of driven systems with SPBC is largely 
phenomenological. The theoretical development is lagging far behind. 
Much of the difficulties can be traced to the lack of an undisputed concept 
of a free energy for nonequilibrium systems in steady states. 122~ Further- 
more, in stark contrast to systems in equilibrium, there is a subtle interplay 
among the external driving field, the boundary conditions, and the lattice. 
In this sense, our problem is a global one, with effectively long-range inter- 
actions. To comprehend such phenomena poses a significant and interesting 
challenge to theorists. 
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